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One-loop effective potentials in quantum electrodynamics 

W Dittrich 
Institut fur Theoretische Physik der Universitat Tubingen, Auf der Morgenstelle 14, 
D-7400, Tubingen 1, West Germany 

Received 2 February 1976 

Abstract. We investigate the one-loop effective potential for some typical external fields in 
electrodynamics, in particular for a constant magnetic field and a laser field. Our treatment 
is based on the corresponding Green function as explicit functional of the prescribed field. 
Schwinger’s source- and proper-time techniques will be used throughout. 

1. Introduction 

The aim of this paper is to illustrate the computation of one-loop effective potentials in 
quantum electrodynamics (QED). Different types of external electromagnetic fields will 
be studied. We demonstrate that the existence of non-linear vacuum phenomena, pair 
production, etc depends essentially on the nature of the external prescribed field. 

The vacuum persistence amplitude (O+lO-)* = exp(i “(”[A])  will be exclusively the 
quantity of interest. It summarizes the effect that an arbitrary number of external 
photon lines can have on a single fermion loop. Since the action iW(”[A] is directly 
related to the Green function G+[A] ,  we are faced primarily with the question of how to 
find G+[A] .  Being interested in vacuum polarization phenomena only, we want to 
compute G+(x, ylA) for x = y ,  i.e., in the neighbourhood about where the quantum 
mechanical fluctuations take place. This summarizes all the information necessary to 
compute the one-loop correction to the classical Lagrangian. It will prove useful to 
work side-by-side with various representations for G+[A]  and i W(”[A].  

Besides the space and momentum representation, it is most convenient to exhibit 
those quantities in the proper-time formalism which makes it easy to compute the 
necessary traces. 

In $2,  we shall collect the functional ingredients and then proceed in $ 3  with 
vacuum polarization effects for different types of electromagnetic fields. 

2. Functional statements 

Here we want to collect the relevant Green function equation, closed-loop factor, etc 
for spinor QED (Schwinger 1973, Fried 1972). The process which summarizes the 
effect that an external field environment A ( x )  can have on a single fermion loop, is 
given analytically by 

(O,lO-)* = exp(i W(”[A]) ,  (2.1) 
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where 

iW"'[A] = -Tr ln(1 -ey .  AG+)-', 

= -Tr ln(G+[A]/G+[Ol)-', 

and 

G+[A] = G+(l-  ey . A&-' .  (2.4) 

Tr indicates the diagonal summation in coordinate and spinor space. Furthermore we 
have the fundamental Green function equation 

[ m  + y(i-' 8, -eA(x))]G+(x, x'lA) = S(x -x'). 

i(SW'"[A]/SA,(x)) = -e tr[y,G+(x, xlA)], 

(2.5) 

Equation (2.3) tells us that knowledge of G+[A] suffices to compute iW"'[A]. For 
further purposes it is useful to state the functional derivative of iW"'[A], 

(2.6) 
which follows from (2.2) when cast into the form 

(2.7) 

There is still another useful expression of WA] .  If we employ the proper-time 
representation (Schwinger 1951) for G+[A]: 

G+[A]=(m-y.rr)i ds exp(-is[m'-(y.rr)']} 

.rrP = i  a,-eA,, 

and use the differential version (2.6), we find 

(2.8) 
-(y.rr)' = .rr~-tea,,Fwv 

lom 
.-1 

With the aid of equation (2.6) and (2.9) it is an easy matter to verify that 

i(d&')/dm) = tr G+(x, x ~ A ) .  (2.10) 

Formula (2.10) allows us to obtain the one-loop contribution by a simple integration. 
All we need is an explicit expression for G+(x, xlA). This will be the main goal of the 
next section. 

3. Effective Lagrangians 

Our starting point is the Green function equation 

( y r +  m)G+(x, x'lA) = S ( x  -x'). (3.1) 

It is a well known fact that this equation allows only for a closed-form solution for some 
special cases of the external electromagnetic field A,(x). In what follows we want to 
concentrate on a constant magnetic (electric) field and a laser field within both scalar 
and spinor QED. Schwinger solved these problems more than two decades ago with 
proper-time techniques (Schwinger 195 1, Heisenberg and Euler 1936, Weisskopf 
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1936). Here we give another way to derive the effective Lagrangian for a constant 
field (Brown and Duff 19731.  

[ -d2+m2- :egF-ae2(x  - - x ’ ) ~ F ~ , ( x  - x ‘ ) ” ] ~ + ( x ,  x’lA‘) =6(x -x ’ )  

The basic equation to be solved is 

(3.2) 

A:= -;(x -X’)’F~,.  

The two different Green functions occurring in (3.1) and (3.2) are related by 

G+(x, x’~A)=exp(ieJ’‘d~~A,(~))[m-y”/ i ’a:+fe(x-xf)~F, , ]4+(x,  X ’  x’; A’). (3.3) 

Here we represented G+[A]  in such a way that the gauge sensitivity becomes explicit. 
Introducing the momentum description by 

we obtain the Green function equation in momentum space: 

(p2+m2-?u.  F+--F,, e 2  a 2 ”) ~ : ( p ) =  1. 
a2 4 aP, a P Y  

Writing K’ = m2-$euF and ezF&= e2F+,F ,̂ = fiv, we get 

This equation can be solved with the ansatz 
oc 

4;(p; K 2 )  = i J’” ds e-M(is) 

ds e-K2Se-M(S), 
= I”m 

where 

M ( s )  = ppXp,(s)p“ + Y(s)  
upon changing s + -is. So we need to evaluate 

Since 

we find 

- i a  - f fEwde-”=[- ;Tr(f2X)+p.  (Xf’X) . ~ ] e - ~ .  
4 a h  a P Y  

(3.4) 

(3.5) 

(3.10) 

(3.11) 

t These authors use similar techniques which, however, are based on background field methods, functional 
integration, etc which can be dispensed with. 
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Therefore 
.m 1 ds[ K’ + p . ( 1  + Xf ’X) . p - t Tr( f ’X)] e-”z e-’(s’ = 1. 
0 

Setting 

1 +xf’x = ax/as, 
-f Tr ( f2X)  = aY/as, 

(3.12) 

(3.13) 

with boundary condition e-sKz e-M(s) 1 0  = -1, we find as solution for the system (3.13): 

X(S) = f -’ tan(fs), 

Y(s )  = t Tr ln[cos( fs)]. 

This yields the Green function in configuration space: 

(3.14) 

(3.15) 

Formula (2. lo), however, requires only the diagonal part of A+(x, x’l A’) which we take 
from (3.15) 

(3.16) 

where the momentum space integral is taken to be n dimensional. Only at the end of the 
calculation d o  we take the limit n =4. The p integral occurring in (3.16) is readily 
evaluated: 

exp[-f Tr In(s-’X)] - -- i “  ds - S K 2  e - y ( S )  

(4T)”” Io Fe 
m i - -- 

with 

j 4 s )  = 4 Tr ln[(sf)-’ sin(fs)]. 

According to equation (3.3) we find 

and 
i 

Tr G+(x, x(F)  = m- exp(-t Tr In[( esF)-’ sin(eFs)]}Tr(efi euFs) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 
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which is stated in equation (2.10). A simple integration with respect to m produces 
Schwinger's old result for a constant field (Schwinger 1951): 

and 

y ( s )  = 4 Tr ln[(eFs)-' sinh(eFs)]. (3.22) 

If there is only an external constant magnetic field present, e.g. F12 = -F21 = H, we find 
Tr exp(3ieaFs) = 4 cos(eHs) and 

eFs eHs 
(sinh(eFs)) = sin(eHs)' 

exp(-y(s)) = det 

With the substitution s + -is in (3.21) and appropriate choice of contact terms, we find 
at last 

(3.23) 
ds - m 2 s  2 "  e [(eHs) coth(eHs)- 1 -$(esH)'] =qWl=-- (4T)" lo -p 

(3.24) 

If we make use of the formula (Gradshteyn and Ryzhik 1965) 

lo" d z  zP-' e-crz coth z = r(p)(2'-'5(p, a/2) - a-@) 

we can integrate (3.24) with the result 

+ 4m;(eH) - 3 mi + 2(4eH)'4"(-1; mi/2eH)) (3.25) 

where the subscript 3 is indicative of spin-4 particles. One can now follow the same 
scheme as displayed so far to produce an equivalent result for scalar QED with external 
constant magnetic field: 

ds -,,, eHs 1 1 "  
- 1 +-(esm2) 9; ) [H]= 2 

1 6 ~  10 3e (sinh(eHs) 6 

= i[ 1 [2 m: - $(eH)'][ 1 +In( g)] - 3 m: + 2(4eH)'['( - 1 ; s) ). 
64 T 

(3.26) 
Here we employed the formula (Gradshteyn and Ryzhik 1965) 



1176 W Dittrich 

Adding up the two contributions then leads to 

1 
64 T 

LE,!&[ HI = y[ [ 2m: - f( eH)2] In + [ -4 mi + 8 mi( eH) - $( eH)2] In 

- m: - f(eH)’ + 2(4eIq2[’ (- 1 ; 2 e ~  

+ 2 ml - $( eH)2 - 4(4eH)2 l’( - 1 ; (3.27) 

The other interesting case, in which only a pure electric field is applied, yields an 
effective Lagrangian 

2?r’[E] = 2?r)[H+ i-’E in (3.25)]. 

In contrast with (3.25) this Lagrangian has an imaginary part which leads to a 
non-vanishing probability of the vacuum remaining unchanged: I(O+lO-)(z = 
exp(-2 Im w”). The result for the production probability of an electron-positron pair 
in an external electric field is exactly that given by Schwinger (1951). 

If the external electromagnetic field is taken to be a laser field, it is also possible to 
write down the exact solution for the basic Green function equation (3.1) (Schwinger 
1951, Dittrich 1972, Mitter 1975): 

G+(x’, x”IAL) = ( m  - y ~ )  ele* - 1 l a d s  -5 exp [ 1 .((x’-x”)’ - (m’+e’amz)s)] (47d2 0 s 4s 

x A+(x’-x”(A’) (3.28) 

where 

The remainder of the definitions can be looked up in Dittrich (1972) and Mitter (1975). 
Again we want to extract the diagonal part G+(x, x(AL) and therefore need to know 
the behaviour of am2((’,  5”) for x‘  = x”?. This can be done by changing variables 

l + A  1 - A  
2 2 e=- f+ -  ~ = X + A Z ,  d5 = z dh, 

where X = +((’+ t”), z = i ( [ ’ - f ‘ ) ,  and expanding 

A ( X  + A Z )  = A (x)  + A Z A ~ X )  + ~ ( A z ) ~ A ’ ~ ( x )  

= A(X) +AZF(X) +$(AZ)~A”(X). 

i I am indebted to Wu-yang Tsai of the University of California at Los Angeles on this point. 
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Then we obtain the following short-distance behaviour of amZ: 

1177 

+1 + l  

am2((’,  f ’ ) =  u 2 [ [ - ,  idAA2(X+Az)-(/  -1 idAA(X+Az))’] 

= u 2 [  /-;‘&dA [ A2(X) + A ’z ’(A’(X)’ + A  (X)A”(X))] 

- (I-: idh (A (X) + $A z 2A ”( X)))] 

= A ~ ( x )  + $ z ~ ( A ”  +AA”) - ( A ~  + ~ z ~ A ” A )  

= &U 2( 6’ - 6”)2F2[;( 6’ + [“)I = - &U 2( x‘ - X ” ) P F t F A ,  (x’ - x”) 

Therefore, we find for x’ --- XI’, 

L Y / 

+l  

l+is j_l  idA’ieuufAFA[X+A’z]. 

Now we can take the limit x’+ x”  in equation (3.28) and obtain the result: 

(3.29) 

The solution of the differential equation i&!@’’/am = tr G+(x, x )  is now given by 

where the contact term (a) has to be chosen so as to produce a vanishing result for zi1). 
The one-loop effective potential is therefore strictly zero, contrary to the constant 

magnetic field. This result also holds when the particle that propagates through the 
external laser field is taken to be ascalar. Here the Green function, for x ’ +  x”, is simply 

and the differential equation to be solved is given by 

-i89(1)/&ni = A+(x, x )  

which yields 

Hence the laser field is not a suitable environment to generate a non-vanishing effective 
potential (in the one-loop approximation) (Salam and Strathdee 1975, Kibble er a1 
1975). 
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There is, however, the possibility of creating an effective potential if we take a pure 
scalar field theory instead of a vector theory. Here we present only the most important 
steps, Let the scalar plane wave field be A = A ( t ) ,  with 5 =  k .  x, k 2 = 0 ,  and the 
Lagrangian be taken as 

2= - f [ ( a , ~ ) 2 + ( m + g A ) 2 ~ 2 ] .  

The basic Green function equation is now given by 

(-a2+ m2 + gJ)A+[J] = 6, 

where J = 2mA + gA2. The solution of this equation can be found with the ansatz 

A+(x, p ( J )  = / dy eipyA+(x, y1J) =elPxg+(x, p ( J )  

[m2+(p+i -1a)2+g~]g+= ( p 2 + m 2 + 2 p i - l ~ + g ~ ) g + =  1 (3.30) 
with 

having anticipated (i-’J)2g+ = 0, since k 2  = 0. Equation (3.30) can be satisfied by 
” 

g+(x, plJ)=i  Io da exp[-icu(p2+m2-ie)] exp(-iglOada’J(x 

or, if we perform the Fourier transform on the outgoing variable, 
m 

g+(q, y ~ ~ ) = i  Jo d a  exd-ia(q2+m2-ie)lexp(-ig Jo‘da‘J(y + 2 q r ~ ‘ ) ) .  

We then obtain 

By various changes of variables A+(x’, x”lJ) can be converted into (Dittrich 1972, Mitter 
1975) 

A+(x’, x”lA) = - 1 ”  I % exp[ i((x’-x’’)2 - ( m 2  +6m2)a)] (3.31) 
(4.lrI2 0 ff 4a 

where 

(3.32) 

For a simple choice of A(5), e.g. A(5) = at, 5 = k . x, we get 
am2([’, 5”) = mga([’+F)+sg 1 2 2  a [ (5’+5”)2-5’5f’] .  

The behaviour of am2((’, t”), for 5’- t”, as is important for vacuum polarization 
phenomena, is given by 

am2(5)  = 2mgA(5)+g2A(5).  

The diagonal element of A+ then yields 

where K’ = m2+6m2(5) 
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On employing iX@”/dtc2 = -$A+(x, x lJ )  we find at last 

which leads to the following effective potential: 

- 2 m3 g.4 (5) - g2 m2A (5) - +( 2 mgA (5) + g2A ’( 5))’] . 

4. Conclusion 

Our main goal in this paper was to set up a Green function formalism for computing 
effective Lagrangians in the one-loop approximation. This has been achieved for scalar 
and spinor QED with constant magnetic (electric) field. Finally, some of the conceptual 
difficulties associated with the generation of masses in the one-loop approximation 
(instead of spontaneous symmetry breaking) have been clarified for the laser case. Laser 
field theory is not the right arena for setting up a mass generating mechanism (in the 
one-loop approximation). This fact is in contrast with the result of a pure neutral scalar 
field theory. Here one finds an effective potential (mass shift) that a scalar particle 
would experience when propagating through an external c -number field. 
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